11E D 4855452 0008672 8

Data Sheet No. PD-9.434B

INTERNATIONAL RECTIFIER

INTERNATIONAL RECTIFIER

T-39-11

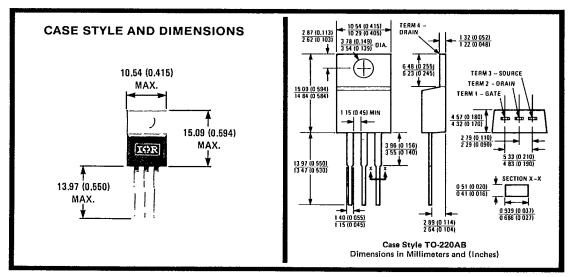
HEXFET[®] TRANSISTORS IRFZ20

N-Channel 50 Volt Power MOSFETs

50 Volt, 0.1 Ohm HEXFET TO-220AB Plastic Package

The HEXFET technology has expanded its product base to serve the low voltage, very low R_{DS(on)} MOSFET transistor requirements. International Rectifier's highly efficient geometry and unique processing of the HEXFET have been combined to create the lowest on resistance per device performance. In addition to this feature all HEXFETs have documented reliability and parts per million quality !

The HEXFET transistors also offer all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and in systems that are operated from low voltage batteries, such as automotive, portable equipment, etc.

Product Summary

	-		
Part Number	V _{DS}	R _{DS(on)}	۱ _D
IRFZ20	50V	0.10Ω	15A
IRFZ22	50V	0.12Ω	14A

Features:

- Extremely Low RDS(on)
- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- Excellent Temperature Stability
- Parts Per Million Quality

C-421

10-2

IRFZ20, IRFZ22 Devices

11E D 📕 4855452 0008673 0

INTERNATIONAL RECTIFIER

T-39-11

Absolute Maximum Ratings

Parameter		IRFZ20	IRFZ22	Units
VDS	Drain - Source Voltage ①	50	50	- v
VDGR	Drain - Gate Voltage (RGS = 20 K0) ①	60	50	v
D @ TC = 25°C	Continuous Drain Current	15	14	A
$D @ T_C = 100^{\circ}C$		10	9.0	A
DM	Pulsed Drain Current @	60	56	A
/ _{GS}	Gate - Source Voltage		v	
$P_{D} @ T_{C} = 25^{\circ}C$	Max. Power Dissipation	40 (W	
	Linear Derating Factor	0.32	W/K @	
ILM Inductive Current, Clamped		(See Fig. 15	A	
- 2141		60	56	
Tj Tstg	Operating Junction and Storage Temperature Range	-	°C	
	Lead Temperature	300 (0.063 in. (1.	0°	

Electrical Characteristics @ $T_C = 25^{\circ}C$ (Unless Otherwise Specified)

	Parameter	Туре	Min.	Тур.	Max.	Units	Test Cor	lamons
BVDSS	Drain - Source Breakdown Voltage	IRFZ20	50	-		V	$V_{GS} = 0V$	
		IRFZ22	50	-	-	V	I _D = 250 μA	
VGS(th)	Gate Threshold Voltage	ALL	2.0	-	4.0	V	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	
IGSS	Gate-Source Leakage Forward	ALL	-	—	500	nA	$V_{GS} = 20V$	
GSS	Gate-Source Leakage Reverse	ALL	-	-	-500	nA	$V_{GS} = -20V$	
DSS	Zero Gate Voltage Drain Current	ALL	-	- 1	250	μA	V _{DS} = Max. Rating, V _{GS} =	0V
			1	-	1000	μA	V _{DS} = Max. Rating × 0.8, V	$I_{\rm GS} = 0V, T_{\rm C} = 125^{\circ}{\rm C}$
D(on)	On-State Drain Current @	IRFZ20	15	-	-	A	V _{DS} > I _{D(on)} × R _{DS(on)ma}	. Vas = 10V
Diani		IRFZ22	14	-	_	A	1D5 > 1D(0H)	
R _{DS(on)}	Static Drain-Source On-State Resistance @	IRFZ20	-	0.080	0.100	Q	$V_{GS} = 10V, I_D = 9.0A$	
50(0.0		IRFZ22	-	0.110	0.120	Q		
Øfs	Forward Transconductance @	ALL	5.0	6.0	-	S (0)	$V_{DS} > I_{D(on)} \times R_{DS(on)} m$ $V_{GS} = 0V, V_{DS} = 25V, f =$	$_{\text{ax., ID}} = 9.0\text{A}$
C _{iss}	Input Capacitance	ALL		560	850	pF	$V_{GS} = 0V, V_{DS} = 25V, f =$	1.0 MHz
Coss	Output Capacitance	ALL	-	250	350	pF	See Fig. 10	
CTSS	Reverse Transfer Capacitance	ALL	-	60	100	pF		······
td(on)	Turn-On Delay Time	ALL	-	15	30	ns	$V_{DD} \cong 25V, I_D = 9.0A, Z_0 =$	= 50Ω
t _r	Rise Time	ALL	-	45	90	ns	See Fig. 17	
td(off)	Turn-Off Delay Time	ALL	-	20	40	ns	(MOSFET switching times are operating temperature.)	essentially independent of
tr	Fall Time	ALL		15	30	ПS		
ò _g	Total Gate Charge (Gate-Source Plus Gate-Drain)	ALL		12	17	nC	$V_{GS} = 10V, I_D = 20A, V_{DS}$ See Fig. 18 for test circuit. (G	= 0.8 Max. Rating. ate charge is essentially
Qgs	Gate-Source Charge	ALL	-	9,0	-	nC	independent of operating tem	perature)
Q _{ad}	Gate-Drain ("Miller") Charge	ALL		3.0		nC		
LD	Internal Drain Inductance		-	3.5	-	nH	Measured from the contact screw on tab to center of die.	Modified MOSFET symbol showing the internal device
		ALL	-	4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of dia.	inductances.
LS	Internal Source Inductance	ALL	-	7.5		nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	

Thermal Resistance

RthJC Junction-to-Case	ALL		-	3.12	K/W @	
RthCS Case-to-Sink	ALL	-	1.0	-	K/W 🛈	Mounting surface flat, smooth, and greased.
Bth IA Junction-to-Ambient	ALL	-	-	80	K/W ④	Typical socket mount

C-422

11E D 4855452 0008674 1

INTERNATIONAL RECTIFIER

IRFZ20, IRFZ22 Devices

T-39-11

Source-Drain Diode Ratings and Characteristics

۱s	S Continuous Source Current (Body Djode)	IRFZ20	-	<u> </u>	15	A	Modified MOSFET symbol showing the integral o		
		IRFZ22	-	-	14	A	reverse P-N junction rectifier.		
ISM	Pulse Source Current (Body Diode) (3)	IRFZ20	_		60	A			
		IRFZ22		-	56	A			
VSD	Diode Forward Voltage @	IRFZ20		_	1.5	V	$T_{C} = 25^{\circ}C, I_{S} = 15A, V_{GS} = 0V$		
L		IRFZ22	_	_	1.4	V V	$T_{C} = 25^{\circ}C, I_{S} = 14A, V_{GS} = 0V$		
<u>tr</u>	Reverse Recovery Time	ALL	_	100		ns	$T_{\rm J} = 150^{\circ}$ C, $I_{\rm F} = 15$ A, $dI_{\rm F}$ dt = 100A/µs		
QRR	Reverse Recovered Charge	ALL	_	0.4	-	μC	$T_{j} = 150^{\circ}C$, $I_{F} = 15A$, $dI_{F}/dt = 100A/\mu_{S}$		
ton	Forward Turn-on Time	ALL	Intri	nsic turn	on time	is negligi	ible. Turn-on speed is substantially controlled by Ls + Ln.		

0 T_J = 25°C to 150°C. 0 Pulse Test: Pulse width \leqslant 300 μs , Duty Cycle \leqslant 2%.

K/W = °C/W
 W/K = W/°C
 W/K = W/°C
 W/W
 W/K = W/°C
 W/W
 W
 W/W
 W
 W/W
 W/W
 W
 W/W
 W/W
 W
 W/W
 W
 W/W
 W
 W/W
 W
 W/W
 W
 W/W
 W/W
 W/W
 W
 W
 W/W
 W/W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W

Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).

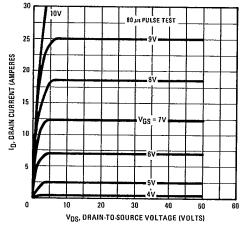


Fig. 1 - Typical Output Characteristics

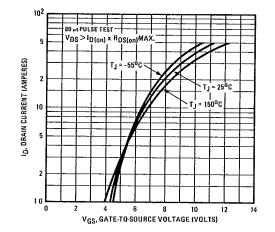
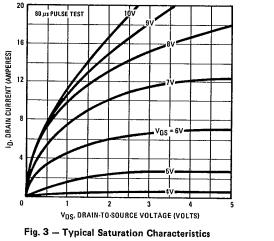
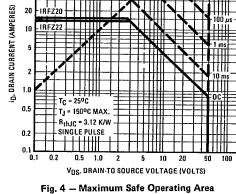




Fig. 2 - Typical Transfer Characteristics

PERATION IN THIS AREA S LIMITED BY RDS(on)

100

IRI 50 IRFZ22

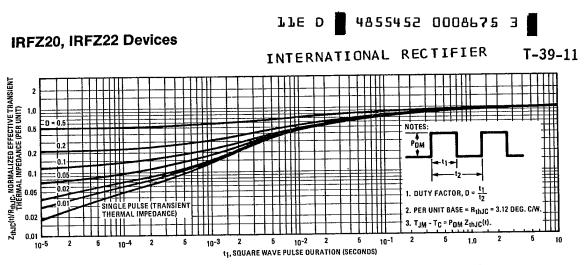
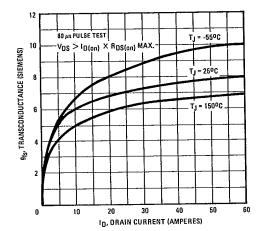



Fig. 5 – Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

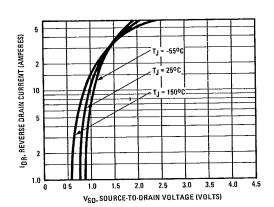
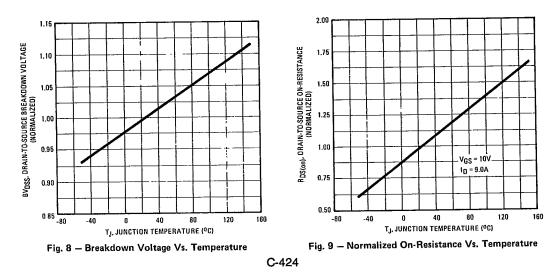
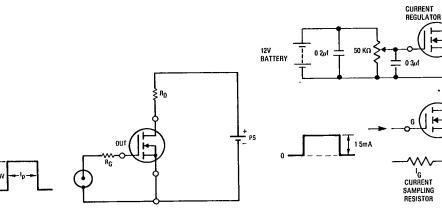
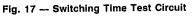



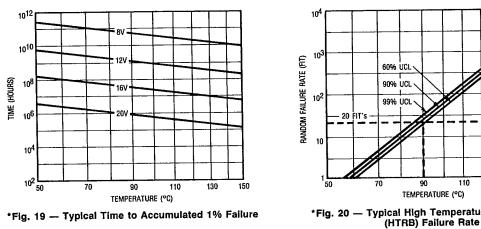

Fig. 7 — Typical Source-Drain Diode Forward Voltage

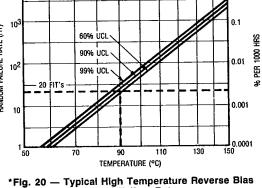



This Material Copyrighted By Its Respective Manufacturer

IRFZ20, IRFZ22 Devices

INTERNATIONAL RECTIFIER T-39-11


^{+ V}DS (ISOLATED SUPPLY) o


> -Vos ο

SAME TYPE AS DUT

DUT

¹D CURRENT SAMPLING RESISTOR

*The data shown is correct as of April 15, 1967. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.

\$

